
Int.  J. Therm.  Sci. (1999) 38, 595-600 
I~) Elsevier, Paris 

A note on possible flow instabilities 
in melting from the side 

P a t r i c k  Le Qu6r6 ~*, D o m i n i q u e  G o b i n  b 

a Limsi, BP 133, 91403 Orsag cedex, France 
b Fast, universitd Paris-Sud, bd~t. 502, 91405 Orsay cedex, France 

(Received 14 September 1998, accepted 7 January t999) 

L_ 
~U 

~ M  

0 

Abstract - -  This paper presents a scale analysis of the parameters for which f low instabilities can be expected in coupled phase 
change - natural convection in cavities heated from the side. The results are in agreement with what was observed numerically for 
very low Prandtl number fluids, where mult iple cells were found to appear early on as a result of the instabil i ty of the conduction 
regime. For very large Prandtl number f low instabilities, mult iple cells, if any, would only occur at very large nominal Rayleigh 
number. ~) Elsevier, Paris. 
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Resum~ - -  Une note sur de possibles instabilit~s hydrodynamiques en couplage fusion-convection avec chauffage lateral. 
On pr6sente une analyse d'ordres de grandeur des param6tres pour lesquels les 6coulements de convection naturelle cons4cutifs ~. 
la fusion d'un mat6riau chauff6 lat6ralement peuvent pr4senter des instabilit6s hydrodynamiques. Ces r6sultats sont confirm6s par 
des simulations num6riques dans des fluides de faible nombre de Prandtl, off des cellules transverses, correspondant ~. I ' instabil it4 
du r6gime de conduction, ont 6t6 observ6es pour des temps courts. Dans des fluides ~. fort nombre de Prandtl, de possibles 
instabilit6s ne pourraient 6tre observ6es qu'~. des nombres de Rayleigh nominaux tr4s grands. I~) Elsevier, Paris. 
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Nomenclature 

A aspect ratio of the enclosure, = H / L  
C scaling factor 

Cp specific heat of the liquid phase . . . . . .  
Fo Fourier nmnber ,  = c~ t / H  2 
g acceleration of gravity . . . . . . . . . . . . . .  
GrH Grashof  number ,  g fl A T  H a/~2 

H height of the enclosure . . . . . . . . . . . . . .  

k thermal  conductivity of the liquid . . .  

L width of the enclosure . . . . . . . . . . . . . .  

LF latent heat . . . . . . . . . . . . . . . . . . . . . . . . .  
N u  average Nusselt number  
P r  Prandt l  number ,  = ~/c~ 
FtaH Rayleigh number ,  = P r  GrH 
-Re Reynolds number ,  = (w 6)/~ 
S te  Stefan nmnber ,  = Cp(T1 - TF) /LF  
t dimensional t ime . . . . . . . . . . . . . . . . . . .  

* Correspondence and reprints. 
plq@limsi.fr 

T 
T~ 
To 

J.kg -1 .K-1  T1 
Tm 

m . s - ~  ~ (~) 

m 

W . m - l . s - 1  

n l  

J.kg -1 

x (z)  

dimensional t empera ture  . . . . . . . . . . . .  K 

melting tempera ture  . . . . . . . . . . . . . . . .  K 
initial t empera ture  . . . . . . . . . . . . . . . . .  K 
hot wall t empera ture  . . . . . . . . . . . . . . .  K 

reference tempera ture  = (TF + T0) /2  K 
vertical (horizontal) component  of 
velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . .  m. s - 1 

dimensionless coordinates, = x * / H  ( z * / H) 

Greek symbols 

a thermal  diffusivity . . . . . . . . . . . . . . . . . .  m2.s -1 

fl coefficient of volumetric thermal  ex- 
pansion . . . . . . . . . . . . . . . . . . . . . . . . . . . .  K - 1 

A T  tempera ture  difference between walls, 
T 1 -  TF . . . . . . . . . . . . . . . . . . . . . . . . . . .  K 
instantaneous width of liquid reg ion ,  m 

~, kinematic viscosity . . . . . . . . . . . . . . . . .  m ~.s-  1 

7 dimensionless time, = F o x  Ste  
0 dimensionless temperature ,  

0 = (T  - T m ) / A T  
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1. I N T R O D U C T I O N  Nusselt number 

Many industr ial  or na tura l  processes involve 
sol id/ l iquid phase change phenomena.  One pro to type  
configuration to s tudy the influence of natura l  circula- 
t ion on the phase change kinetics is the so-called dif- 
ferentially heated cavity where a piece of solid mater ia l  
is suddenly heated above its melt ing tempera ture  along 
a vertical  boundary.  This problem has been addressed 
many t imes in the l i terature,  experimentally,  analyt-  
ically and numerically. In par t icular  many numerical 
algori thms have been derived to simulate this configu- 
ration, which fall into two categories, adapt ive  grids or 
fixed grids. Both classes of solution methodology have 
advantages and drawbacks in terms of accuracy and 
computa t iona l  efficiency. 

In order to compare these methods on an equal 
footing, we recently proposed a benchmark exercise to 
assess the performance and predictions of numerical 
algori thms designed to tackle such a coupled problem 
[3]. For the geometrical  configuration defined in figure 1, 
four test  cases were defined corresponding to two values 
of the Rayleigh number  for two Prand t l  numbers. The 
Prand t l  numbers were chosen to match the value of 
gallium or t in (Pr = 0.02) and octadecane (Pr = 50). 
For each Prand t l  number,  the higher Rayleigh number 
was computed  to correspond to actual  experiments  for 
which exper imental  measurements  are available. 

In the course of the computat ions,  two of the 
par t ic ipants  to the benchmark  predicted a somewhat 
slower Nusselt number decrease with t ime for the case 
labelled ¢p 2 (Rail = 2.5.10 ~, Pr = 0.02; figure 2). This 
was a t t r ibu ted  to the appearance of multiple cells early 
in the development of the solution. Four cells were found 
to establish at  onset, which quickly reduced to 3 by the 
merging of the two uppermost ,  and then to 2 again after 
the  merging of the two uppermost .  I t  was also found tha t  
the  two-cell regime became oscillatory, in the sense tha t  
a high frequency oscillation developed on top of the slow 
transient ,  corresponding to the melt ing t ime scale. This 
multicellular s t ructure  was found to quite appreciably 
enhance the overall heat  t ransfer  and to substant ia l ly  
affect the shape of the interface, appearing not just  
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Figure 1. Schematic diagram of the problem. 
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Figure 2. Time evolut ion of the average Nusselt  number  for 
case # 2. The different curves are labelled according to the 
names  of  the benchmark participants. 

as a consequenceless curiosity. It was later brought 
to our a t tent ion tha t  multiple cells were also found 
by Dantzig [5] in a finite element simulation of the 
experiment  by Gau and Viskanta [7]. It should be noted 
however tha t  Gau and Viskanta do not mention any such 
phenomenon (cells and /o r  high frequency unsteadiness) 
in their experiments.  Later  experiments in the same 
parameter  range by Campbel l  and Koster [4] with a 
more accurate visualization of the interface also did not 
mention such effects. 

The purpose of this note is to establish cri teria 
governing the possible onset of multieellular flow in 
the early t imes when melting a pure substance from a 
heated wall. The paper  is organized as follows. We first 
briefly recall the problem definition. We then address 
the problem of multicellular instability, and from scaling 
laws and available s tabi l i ty  analyses we establish general 
cri teria governing the possible onset of multieellular 
flow. We finally address the question of the onset of 
oscillatory instability. 

2. PROBLEM D E F I N I T I O N  

The problem under consideration deals with the the 
melting of a pure substance controlled by natura l  con- 
vection in the melt. One considers a 2D cavity (height 
H and width L) init ially filled with a solid mater ia l  uni- 
formly at the melting tempera ture  (To = TF). At  t = 0, 
the t empera ture  of one of tile vertical walls (the left wall 
in figure 1) is raised to a value T1 > TF, while the other 
vertical wall is mainta ined at  the initial temperature .  
The horizontal walls are assumed to be adiabat ic  and 
no-slip. The fluid flow is supposed to be in the laminar 
regime, and the thermophysieal  propert ies  of the mate-  
rial ( thermal diffusity a,  kinematic viscosity u, thermal  
capaci ty  Cp, latent  heat  LF) to be constant.  
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After a pure conduction stage, thermal  convection 
develops in the liquid phase, causing a non-uniform 
dis t r ibut ion of the heat  flux at the interface and a 
non-uniform displacement of the melting front. 

The problem is characterized by the following 
parameters:  

- The Rayleigh number: Rail  = g fl (T1 - TF) H 3 / a  u 

The Prand t l  number: P r  = u / a  

The Stefan number: Ste  = Cp(T1 - Te) /LF 

The global aspect  ratio: A = H / L .  

3. P R I M A R Y  I N S T A B I L I T Y  

3 .1 .  S c a l i n g  a n a l y s i s  

Early on the fluid motion develops in a tal l  cavity. 
I t  is known tha t  this type of fluid circulation may be 
prone to hydrodynamic  instabil i t ies classically known 
as the instabi l i ty  of the conduction regime. The onset 
of such instabil i t ies has been generally quantified as 
a function of the Grashof  ( g / 3 A T L 3 / u  ~) or Rayleigh 
(Ra = Gr Pr)  numbers,  based on the width L of the 
rectangular  fluid enclosure. I t  is known tha t  for the 
conduction solution the fluid velocity expression is 

1 g ~ 3 A T L  2 
w -- 6 , x (x - 0.5)(x + 0.5) (1) 

where x represents the horizontal  length scaled with the 
width L of the cavity and ranges from -0 .5  to 0.5. The 
corresponding maximum fluid velocity is approximate ly  
equal to O . O 0 8 g ~ A T L 2 / u .  The Grashof  number can 
thus be viewed as a Reynolds number based on the 
width of the layer and on the characterist ic  scaling for 
the velocity. If the Reynolds number is based on the 
maximum velocity the relat ionship reads Re ~_ Gr/125. 
The fluid layer will then become linearly unstable when 
its characterist ic  Reynolds number reaches a critical 
value Re~ ~- Gr~(Pr)/125. 

Let us assume tha t  the Stefan number is very small. 
In this limit, the t empera tu re  field across the slot is 
in the conduction regime and the t empera tu re  gradient  
is AT~5, where 6 is the width of the liquid region. 
A conduction-phase change balance at  the fluid-solid 
interface classically yields 

6 ~ = 2 a Ste  t (2) 

Going to the ver t ica l -momentum equation, the dom- 
inant terms are the unsteady, viscous and buoyancy 
terms (see e.g. [1]), which are, upon using (2), of respec- 
tive order 

w P r  w 
t '  S te  t ' g f l A T  

In most si tuations of pract ical  interest P r / S t e  >> 1 (in 
the present cases, P r / S t e  is respectively 2 and 500) and 
consequently 

w = c g f l A T S t e t  p~ (3) 

The scaling factor C was determined from the com- 
puta t ions  for cases 7~ 2 and # 4 (figure 3) and was found 
to be equal to 0.015. The instantaneous characterist ic  
Reynolds number,  based on the instantaneous velocity 
maximum and layer width,  thus reads: ()" RaH t 

Re(t)  ~-- 0.02 ~ ~ (4) 
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Figure 3. Early time evolution of maximum of the vertical 
velocity component at z = 1 / 2 :  (- - -) case # 2; ( - - )  case # 4. 

O~ ~ 1/2 
The velocity unit is -~ zta H and the time unit is 

H 2 
Rail 1/2 S r  1. The scaling factor in equation (3) is the 

a 
average slope of the lines. 

One can thus ant icipate  tha t  instabili t ies will occur 
when t ime increases and the critical t ime at  which the 
layer will become linearly unstable is 

H 2 { Gr¢ ~ 2/3 
t~ _ 0.5 ~ \b-~-~. ] (5) 

By this t ime the cavity aspect rat io is 

( (~7. H -~ 1/3 
A~ ~-- \ Grc ] (6) 

The s tabi l i ty  of the conduction solution for each of the 
Prand t l  numbers considered in the benchmark problem 
has been investigated by various authors [2, 8, 11]. The 
critical Grashof number for Pr  = 0.02 is 8 000 and the 
most dangerous modes are steady, while for P r  = 50 
the critical Grashof number  is of the order of 1 000 and 
the instabil i ty is oscillatory. The corresponding critical 
t imes and aspect  ratios are listed in the table L The 
fact tha t  the numerical values vary very litt le for each 
Prand t l  number is purely accidental.  
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TABLE I 
Critical dimensionless times and aspect ratios: 

top for P r  = 0.02, bottom for P r  = 50. 

Rail Ac Tc 

2.5.10 4 
2.5.10 5 

5 

11 

l~a H Ac 

1. l0 T 5.5 
1.10 s 12 

0.02 
0.004 

7-c 

0.016 

0.0035 

The above analysis has obvious l imitations.  I t  first 
assumes tha t  the base flow solution is quasi-s teady 
and tha t  the instabi l i ty  develops rapidly compared to 
the slow t ime scale evolution. Extending the linear 
s tabi l i ty  analysis for an unsteady base flow solution 
is however beyond the scope of this note. The t ime 
given by (5) is thus an underes t imat ion of the actual  
t ime at which the instabi l i ty  should become visible. 
Secondly, the instabi l i ty  will develop provided the flow 
is still in the conduction regime. One may ant icipate  
tha t  two main reasons can prevent this. The first one 
is non parallelism: if the aspect  ratio is too small, 
the fluid cavity will a l ready be highly dis tor ted which 
may prevent the instability. The other one is due to 
the well known fact tha t  s trat i f icat ion may develop, in 
par t icular  for large P rand t l  numbers,  and make the flow 
switch from the conduction to the improper ly  named 
' t rans i t ion '  or separa ted  boundary  layer regimes. The 
s tabi l i ty  of the t ransi t ion and boundary  layer regimes 
may be quite different from those of the conduction 
regime, as described by Bergholz [2] who showed tha t  
the crit ical Grashof  number  is an increasing function of 
the strat i f icat ion parameter .  

3.2 .  E x p e r i m e n t a l  v e r i f i c a t i o n  

3.2.1. Low Prandt l  n u m b e r  

In view of the above analysis, the numerical results 
were checked and it was indeed found tha t  at t ime 
v = 0.0042, the solution corresponding to Pr  = 0.02 
and Rail = 2.5.105 showed the formation of four cells, 
regularly spaced throughout  the cavity height (figure ,{). 
No cells were found either for Rail = 2.5"104, or for 
Pr = 50 whatever  the value of Rail.  The reason why no 
cell was found for Rai~ = 2.5.104 is very likely due to the 
fact tha t  the instabi l i ty  would occur at a t ime of 0.02 
when the cavity aspect  ra t io  is 5. At  this late time, n o n  
parallel ism is a l ready strong and is likely to prevent the 
instabi l i ty  to appear .  Concluding tha t  the instabi l i ty  
can only develop when the cavity aspect  rat io is still 
larger than  10 leads to a general criterion governing the 
onset of instabil i t ies for small P rand t l  number fluids 

OrH >/ 5.106 ~ 10 z 

Figure 4. Temperature and vorticity fields at 7- = 0.0048. 

3.2.2. Large Prandt l  n u m b e r  

For Pr  = 50 no instabil i ty was found whatever the 
value of the Rayleigh number,  even the higher one. 
The explanat ion is tha t  in large Prand t l  number fluids, 
there develops a slight vertical strat if ication very early 
as the Grashof number is increased (due to the low 
thermal  diffusivity), which makes the flow switch to the 
t ransi t ion or boundary  layer regime. At large Prand t l  
numbers,  the s i tuat ion is in fact very complex from the 
s tandpoint  of possible instabilities. In infinite slots, as 
shown by Bergholz [2] amongst  others, the conduction 
regime is prone to a multicellular s ta t ionary  instabil i ty 
if Pr  < 12.7 and to an oscil latory instabil i ty if Pr  > 12.7. 
When  Pr >_ 12.7 this mode of instabi l i ty  persists for 
small stratif ications until, for large enough Prandt l  
number (50 seems to be the critical value), s ta t ionary 
modes become more dangerous (see [2], figure i i ) .  
Nobody has however observed the t ransi t ion to this 
oscil latory regime in finite cavities of large aspect  
rat io although, as noted by Lee and Korpela  [10], 
numerical computat ions  have been performed such that  
their  representat ive point plot ted in a (stratification 
parameter ,  Grashof number) d iagram is well inside 
the instabi l i ty  region. On the other hand numerical 
computat ions  and experimental  visualizations of very 
large Pr (Pr _~ 1000) flows performed in modera te ly  
large aspect  ratio cavities (A _~ 20) have long shown 
multicellular s ta t ionary  pa t te rns  [6, 12]. It can thus 
been inferred tha t  the critical aspect  ratio needed to see 
this multicellular s ta t ionary  instabi l i ty  increases rapidly 
as the P rand t l  number decreases. In part icular ,  Bergholz 
es t imated tha t  it would require a cavity of aspect  ratio 
on the order of 100 to see the appearance of the s teady 
multicellular regime in water. The conclusion is tha t  it 
is thus not clear which type of instabi l i ty  could be seen 
in the case of high Prand t l  number fluids. 

5 9 8  
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Let us just show that  the instability of the conduction 
regime is very unlikely. The end of the conduction regime 
was quantified to be Rail  _~300A 4 (Pr  > 1) [6, 9]. 
Inserting the aspect ratio given by (6) in this expression 
yields a critical value 

1 (Pr Grc) 4 

Using the characteristic values for Pr  = 50 gives 
a nominal Rayleigh number larger than 10 ~1. Since 
Pr  Gr~ is an increasing function of P r  over the range 
20 - 1 000 [2], it is thus clear that  high Prandtl  number 
flows will be very unlikely to display the conduction 
regime instability in this material processing context, 
although possibly in some geophysical configurations. 
There is still one chance that  it could however 
display the steady multicellular instability at large 
enough Prandtl  number (Pr  ~_ 1000) provided the 
Stefan number is small enough for the parallel flow 
approximation to remain valid long enough to let the 
instability develop. 

4.  S E C O N D A R Y  O S C I L L A T O R Y  
I N S T A B I L I T Y  

Also clearly visible in figure 2 is the fact that  the 
mean Nusselt number, and hence the numerical solution 
becomes unsteady at a dimensionless time close to 0.03. 
This instability seems to originate in the shear between 
the two main rolls. In order to determine whether this 
unsteadiness is due to the coupling between natural 
convection and phase change, possibly induced by a 
numerical instability, or simply intrinsic to the natural 
convection flow regime alone, we have carried out a 
numerical integration of the Boussinesq equations in 
a differentially heated cavity of vertical aspect ratio 
equal to 3, of the same order as that  characterizing 
the aspect ratio of the coupled problem at the onset of 
unsteadiness. Starting from rest, the time evolution of 
the temperature at a given monitoring point is displayed 
in figure 5. It indeed shows that  the asymptotic solution 
is time periodic, very likely due to a Hopf bifurcation 
of the steady solution. In the convective time unit 
((He/c~) Rail 1/2) used  for the computation, the period of 
these oscillations is 18.1, which compares favorably with 
that  of 10.8 characterizing the oscillations of the coupled 
problem. (Note that  in a cavity of aspect ratio 4, the 
time asymptotic solution is also periodic with a period 
of 13). Snapshots of instantaneous temperature fields 
corresponding to the pure natural convection and to 
the coupled problem are presented in figure 6, showing 
the qualitative ressemblance and thereby establishing 
that  the oscillatory instability is intrinsic to the natural 
convection alone. 
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Figure 5. Time evolution of temperature 0 at (x/H, z/H) 
= (0.025,0.5) for Rail = 2.5-105, H / W  = 3. The reference 

r 2 ~  n 1 / 2  time for this computat ion is n / a  ~a H . 
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Figure 6. Instantaneous temperature field in the time peri- 
odic asymptotic regime for pure natural convection (left). 
Instantaneous temperature field of coupled phase change nat- 
ural convect ion configuration at time 73 = 0.04 (r ight). The 
rightmost contour line is the front position. 

5. C O N C L U S I O N  

We have shown that  the natural convection flow 
resulting from melting of pure low Prandtl  number 
substances heated from the side is prone to the classical 
multicellular instability for sufficiently large nominal 
Rayleigh numbers. When it happens, this instability 
strongly influences the rate of heat transfer and hence 
the melting speed and also strongly influences the shape 
of the liquid/solid interface. The nmlti-roll regime that  

599 

L .  

m 
i 

~ R  

~ m  

L _  

O 



P. Le Qu~r~, D. Gobin 

results from this initial steady instability becomes 
later also prone to an oscillatory instability, which 
is intrinsic to the natural convection flow alone. For 
large Prandtl number fluids, the instability of the 
conduction regime is very unlikely in the context of 
material processing, although one may expect that 
very large Prandtl number fluids could also display 
the multicellular instability for small enough Stefan 
numbers. These results and hypothesis require further 
detailed experimental investigations. 
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